A Maximum-Entropy approach for accurate document annotation in the biomedical domain

نویسندگان

  • George Tsatsaronis
  • Natalia Macari
  • Sunna Torge
  • Heiko Dietze
  • Michael Schroeder
چکیده

The increasing number of scientific literature on the Web and the absence of efficient tools used for classifying and searching the documents are the two most important factors that influence the speed of the search and the quality of the results. Previous studies have shown that the usage of ontologies makes it possible to process document and query information at the semantic level, which greatly improves the search for the relevant information and makes one step further towards the Semantic Web. A fundamental step in these approaches is the annotation of documents with ontology concepts, which can also be seen as a classification task. In this paper we address this issue for the biomedical domain and present a new automated and robust method, based on a Maximum Entropy approach, for annotating biomedical literature documents with terms from the Medical Subject Headings (MeSH).The experimental evaluation shows that the suggested Maximum Entropy approach for annotating biomedical documents with MeSH terms is highly accurate, robust to the ambiguity of terms, and can provide very good performance even when a very small number of training documents is used. More precisely, we show that the proposed algorithm obtained an average F-measure of 92.4% (precision 99.41%, recall 86.77%) for the full range of the explored terms (4,078 MeSH terms), and that the algorithm's performance is resilient to terms' ambiguity, achieving an average F-measure of 92.42% (precision 99.32%, recall 86.87%) in the explored MeSH terms which were found to be ambiguous according to the Unified Medical Language System (UMLS) thesaurus. Finally, we compared the results of the suggested methodology with a Naive Bayes and a Decision Trees classification approach, and we show that the Maximum Entropy based approach performed with higher F-Measure in both ambiguous and monosemous MeSH terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

BIOSMILE: Adapting Semantic Role Labeling for Biomedical Verbs: An Exponential Model Coupled with Automatically Generated Template Features

In this paper, we construct a biomedical semantic role labeling (SRL) system that can be used to facilitate relation extraction. First, we construct a proposition bank on top of the popular biomedical GENIA treebank following the PropBank annotation scheme. We only annotate the predicate-argument structures (PAS’s) of thirty frequently used biomedical predicates and their corresponding argument...

متن کامل

A Hybrid Approach to Biomedical Named Entity Recognition and Semantic Role Labeling

In this paper, we describe our hybrid approach to two key NLP technologies: biomedical named entity recognition (Bio-NER) and (Bio-SRL). In Bio-NER, our system successfully integrates linguistic features into the CRF framework. In addition, we employ web lexicons and template-based post-processing to further boost its performance. Through these broad linguistic features and the nature of CRF, o...

متن کامل

A Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure

Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...

متن کامل

BIOSMILE: Adapting Semantic Role Labeling for Biomedical Verbs

In this paper, we construct a biomedical semantic role labeling (SRL) system that can be used to facilitate relation extraction. First, we construct a proposition bank on top of the popular biomedical GENIA treebank following the PropBank annotation scheme. We only annotate the predicate-argument structures (PAS’s) of thirty frequently used biomedical predicates and their corresponding argument...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012